
Netpixl: Towards a New Paradigm for Networked
Application Development

Dimitri Diakopoulos1

California Institute of the Arts1

24700 McBean Pkwy.
Valencia, CA USA

ddiakopoulos@calarts.edu

Ajay Kapur1,2
New Zealand School of Music2

P.O. Box 2332
Wellington, New Zealand

akapur@calarts.edu

ABSTRACT
Netpixl is a new micro-toolkit built to network devices within
interactive installations and environments. Using a familiar
client-server model, Netpixl centrally wraps an important
aspect of ubiquitous computing: real-time messaging. In
the context of sound and music computing, the role of Net-
pixl is to fluidly integrate endpoints like OSC and MIDI
within a larger multi-user system. This paper considers
useful design principles that may be applied to toolkits
like Netpixl while also emphasizing recent approaches to
application development via HTML5 and Javascript, high-
lighting an evolution in networked creative computing.

Keywords
networking, ubiquitious computing, toolkits, html5

1. INTRODUCTION
Within the NIME community, there is a broad body of work
exploring the capabilities of phone, tablet, and embedded
computing platforms. Though Mark Weiser’s own vision of
ubiquitous computing has not yet achieved adoption on the
grand scale he originally envisioned [17], a proliferation of
sensing and I/O technology afforded by such mobile devices
have supported a wide range of novel creative experiences.
Netpixl endeavors to assist developers scout new creative
territory with a collection of simple networking tools guided
by a lightweight server.

Netpixl targets a context schema that describes inter-
actions that occur on a local, synchronous level. A good
example of this schema may be found in any contempo-
rary laptop, mobile-phone orchestra or within recent mod-
els of networked performance [16, 1]. Towards this idea
of multi-user interaction, the central purpose of Netpixl
is to present a device-agnostic channel for communicating
arbitrary streams of data.

More specifically, Netpixl identifies and proposes a partial
solution to the fragmentation of technologies and toolchains
normally employed while developing apps across different
device types. Too often, systems are limited in scope to
a specific platform or programming language. Networked
pieces are commonly written in a number of domain-specific
languages (DSLs) such as ChucK, MaxMSP, CSound, or
Supercollider and may use different network topologies to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

communicate data to fellow performers or exhibition par-
ticipants. Similarly, mobile platforms have their own core
language and protocols: Objective-C on iOS, Java on An-
droid, both sharing the use of a full TCP/IP stack.

Creative developers interested in introducing components
other than OSC endpoints to a piece or exhibition often find
themselves writing glue-code or one-off servers. Recognizing
this issue, the conception of Netpixl was driven by an idea
to ease the developmental effort of systems where ubiquity
among devices — sensors, mobiles, screens, speakers —
is critical. In this scheme, Netpixl abstracts and limits
the amount of boilerplate networking code necessitated by
a new application. At the same time, Netpixl remains
flexible to the implementation language or environment of
the user or audience-facing app so long as it can handle any
one of Netpixl’s supported protocols: serial, MIDI, OSC,
Websocket, or MQTT.

By organizing a system around a generic publish/subscribe
mechanism, Netpixl was conceived as a central protocol-
agnostic router. But in what language or form should this
idea take? One of the primary ideological motivations of
Netpixl has been the adoption of HTML5 standards and
the promotion of Javascript to a first-class citizen in many
mobile browsers. Discussed further in the next section, na-
tive applications and boilerplate OSC networking code are
no longer prerequisites of using mobile devices as expressive
computing platforms. To concretely summarize, Netpixl
meshes this application development paradigm (HTML5 and
Javascript) with traditional networking methods between
actors of interactive and ubiquitous systems.

The remainder of this paper is divided into three primary
parts. Section 2 summarizes notable technologies, tech-
niques, and projects in browser, networking, media com-
puting, and toolkit areas. Section 3 centers on describing
some of the design principles of the toolkit. Section 4 fol-
lows with an exposition of the technical implementation and
summary of the developer-facing API. Section 5 concludes
with several forward-looking ideas for the project. At a
high level, this paper follows an arc of principles for toolkit
design as a template for future innovation rather than a
deep discussion of Netpixl’s technical affordances.

2. RELATED WORK
Netpixl synthesizes concepts from a number of areas in-
cluding mobile toolkit design, Javascript framework archi-
tecture, and the internet of things movement. This sec-
tion is designed to contextualize projects inspired by these
concepts in relation to several core themes of Netpixl: de-
velopmental simplicity, data independence, and platform
agnosticism. In basic form, the following works travel up
and down the ladder of programmatic abstraction: some
are toolkits, others frameworks, and yet more applications.
This section emphasizes the ideation of creative ideas within

�2�0�6



both sound and music computing and computational design.

2.1 Mobile
The capabilities and proliferation of mobile devices continue
to fulfill Mark Weiser’s idea of ubiquitous computing as
evidenced by their recurring use in an emerging number of
collaborative task and creative-oriented environments [17].
One of the most visible results of this in the music commu-
nity has been the development of a number of mobile phone
orchestras, the mobile analogy of a digital music ensemble or
laptop orchestra [10, 15]. As these ensembles have matured,
several open-source toolkits have been released to evangelize
the concept.

MoMu is one of the first toolkits to offer basic abstrac-
tions for audio applications and was developed by the Stan-
ford MoPho group [3]. Developed as an iOS application
framework, MoMu offers a means of unifying sensor access,
creating a basic graphics context, and enabling networked
interactions via OSC. UrMus is another recent iOS toolkit,
with a general focus on evented interaction for UI widgets
[5]. Both projects afford the notion of developmental sim-
plicity for ideation and prototyping, though at the cost of
being tied to iOS.

Among creative-oriented toolkits with server components,
Control is a narrowly-focused example which offers an API
centered on UI [12]. Designed for programmatic interface
consumption on mobile devices, Control couples with pre-
built message-routing backends in SuperCollider and Max.
This project uses the notion of a ’black-box’ to extend wid-
get functionality in the UI, a strategy used extensively in
Netpixl. Though Control lacks the full-application focus of
UrMus or MoMu, it is written in Javascript but bundled in
an iOS wrapper.

Weitzner et al introduces a toolkit using a client-server
model in [18] entitled massMobile. Designed to facilitate
large-scale audience interaction using smart phones in an ex-
hibition or performance format, massMobile uniquely pro-
vides asynchronous communication utilities for reliability in
high-latency environments such as the internet.

2.2 The Browser
While the web has been acknowledged for a long time as an
emerging CSCW platform [2], synchronous real-time net-
working in the browser has been an unmet challenge until
recently. Shifting focus away from native, the following
discussion illustrates the growing force of Javascript and
HTML5 to compete with the performance and networking
capabilities of native apps.

Since early 2010, several methods of near real-time com-
munication have achieved adoption across browsers, for vary-
ing degrees of âĂŸreal-timeâĂŹ. Gutwin et al. present a
performance overview of these methods, finding the HTML5
Websocket protocol being the most performant and reli-
able [6]. Websockets resemble standard TCP/IP networking
sockets in functionality, freeing networking schemes similar
to OSC from the clutches of evil and time consuming native
applications. One caveat of this approach is that no current
browsers permit UDP. In effect, the use of TCP adds a
minimal but slightly perceptible latency depending on the
use-case.

The use of Websockets in published literature is limited,
although effectively documented in several creative exper-
iments on the internet. However, one end-to-end appli-
cation with an idea very similar to the use-cases driving
Netpixl can be found in Patchwerk. Patchwerk is a multi-
user HTML5 UI that communicates with a control-voltage
(CV) module in a massive modular synthesizer [8]. Beyond
Patchwerk, there are an emerging number of multiplayer

games and music environments, as seen in work like Rum-
petroll1, Plink2, BrowserQuest3, and Technitone 4.

2.3 Toolkits
Tools and toolkits supporting creativity are one of the grand
challenges of HCI researchers [13]. In practice, these chal-
lenges are being met by a growing number of creative coding
frameworks in Javascript, including Processing.js, Paper.js,
and Create.js. These types of client-side frameworks, like
the earlier mobile toolkits, boost developer’s efficiently in
executing interactive ideas quickly.

Returning to the earlier idea of glue, many ideas require
the execution of code that communicates between the phys-
ical and the digital. Orbiting physical-computing based
controllerism as seen in the NIME community, the inter-
net of things movement (IoTM) epitomizes the growing
creative applications of ubiquitous computing. IoTM has
brought several valuable concepts to the idea of physical
devices marrying networked interactions. Using a host of
protocols, server-based services like COSM5, Sen.se6, and
Nimbits7 offer methods of aggregating, visualizing, and in-
teracting with embedded sensors and actuators. From a
toolkit perspective, Netpixl borrows inspiration from this
’everything connected’ concept but re-focuses on helping de-
velopers achieve synchronous interactions between the users
behind those devices.

Finally, the last toolkit meriting attention is Spacebrew8.
Coming to fruition after the first Netpixl prototype, this
application conceived by the Lab at Rockwell Group shares
many novel similarities with Netpixl. Spacebrew takes a
friendly approach to networking devices within an interac-
tive space by presenting an HTML5 GUI for connecting
publishers and subscribers to the Spacebrew server. Space-
brew differs in that functionality is designed solely around
Websocket communication. As discussed in the next sec-
tion, Netpixl was more reserved in its assumptions about
developers and more liberal about the need to exchange
data across additional protocols like OSC and MIDI.

3. DESIGN PRINCIPLES
As networked art evolves, toolkits serve to compartmental-
ize certain aspects of technical implementation. For lone-
developers or small teams, creative process and implemen-
tation are strongly coupled. This section is founded on the
thesis that reusable code-level tools can unburden artists in
their creative pursuits. In many cases, the practical net-
working aspects of a ubiquitous system may be considered
a developmental tax. Netpixl is an experiment in providing
an economy of features with low tax, reducing the technical
burden on creative developers. These efforts are supported
by the notion that developers can write code in a common
language across the client and server. Furthermore, the
Nextpixl toolkit is founded on the premise that boilerplate
serverside networking code can be dramatically reduced.

Ian Hattwick and Marcelo Wanderley have presented an
abstract explorer for evaluating collaborative systems, effec-
tively documenting their most critical attributes [7]. Their
taxonomic structure is based on a graph with the following
points: Texture, Equality, Centralization, Physicality, Syn-

1rumpetroll.com/
2labs.dinahmoe.com/plink
3browserquest.mozilla.org
4technitone.com
5cosm.com/
6open.sen.se/
7nimbits.com/
8spacebrew.cc

�2�0�7



chrony, and Dependence. These points were used as guiding
technical design principles for the toolkit.

Before diving into the goals themselves, the abstract of
this paper refers to a micro-toolkit rather than a toolkit
proper. This in itself is a design principle which drove
the narrowly-defined networking focus of the toolkit. An
exemplar of this scope-limited functionality can be seen
in the ’flexibility-usability tradeoff’ design principle. This
principle is explained as:

The flexibility-usability tradeoff is a design principle main-
taining that, as the flexibility of a system increases, its
usability decreases. The tradeoff exists because accommo-
dating flexibility requires satisfying a larger set of require-
ments, which results in complexity and usability compro-
mises (Wikipedia’s definition per [14]).

Complementary to this principle is the idea of featuritis,
where designers or developers tend to “emphasize the num-
ber or novelty of features over core usability [4].” Usability
guru Don Norman argues that as functionality increases,
mental and physical clutter can severely hinder usability [9].
The API of Netpixl was conceived with these principles in
mind as they attempt to decouple implementation mental-
clutter from creative process. Finally, the toolkit adheres
to Postel’s principle, which states: Be conservative in what
you do, be liberal in what you accept from others. This
principle is more visible from the API documentation in
the next section.

3.1 Goals
The principles we have just discussed may be expressed
through five high-level design goals inspired by, and par-
tially derived from, Resnick et. al’s, “Design Principles for
Tools to Support Creative Thinking [11].” The intent of
each goal is was to inform the technical implementation of
the tools within Netpixl:
Support Iteration and Exploration. Creativity sup-

port tools should emphasize the importance of designing
through prototypes. For a developer using a toolkit, this
means being able to easily reconfigure data models and
mappings, change the direction of the concept, and create
new versions without re-architecting large parts of the pro-
gram. Resnick et al. call this goal tinkerability. In practice,
this translates to an easily graspable API for adding in-
put/output targets and making no assumptions about the
type of data.
Keep Developers Unburdened. An unburdened de-

veloper is able to achieve a creative idea more quickly with-
out being faced with common networking problems like syn-
chronicity and protcol formats. The abstraction of this idea
can be sesen as a black-box development model, where cer-
tain aspects of the toolkit work as if by ’magic’. A functional
toolkit should also provide extensibly to this model, though
the constraints of added complexity should be well noted to
the developer.
Encapsulate Domain Knowledge. Domain knowl-

edge can refer to a number of concepts with varying speci-
ficity. In this context, domain knowledge encapsulates the
client-server model for distributed performance and exhi-
bition. A developer should have access to ready-made ab-
stractions for this model and be provided with extensibility
for protocols within their own domain (e.g. OSC or MIDI).
Speak a Common Language. Javascript is the pri-

mary language of the web, supported by all major browsers,
and the target of an immense number of libraries, building
on everything from user-interface design to machine learn-
ing. Approaching Javascript as a developmental platform
harnesses a widely-supported language that can used both
serverside and clientside.

Enhance Creativity. By managing the complexity, a
toolkit should enhance overall creativity. Removing the
mental clutter of implementation glue and suppling the fun-
damental building blocks of collaborative applications, a
new language cloud emerge to describe future creative so-
lutions in this domain.

4. IMPLEMENTATION AND API
This section is centered on providing preliminary documen-
tation about the Netpixl server-API and its features for
kickstarting multi-user application development. Netpixl
is implemented via Node.js9, a framework built on top of
Google’s V8 Javascript engine. Node.js encourages asyn-
chronous code, a perfect building block for building high-
volume messaging applications. The Netpixl distribution
contains a Node.js seed project from which the API can
be accessed through a singleton controller object created at
runtime.

4.1 Serverside API Design
The unified API can be seen as a collection of functions
within three tasks. These tasks can be classified as: i)
data translation across protocols, ii) defining models that
can be published to and subscribed from, and iii) main-
taining state across devices. A fourth meta-API includes
common utilities for creative coding alongside debugging
functions. Though Netpixl is not a ’grab-and-go’ solution
for networking, the idea is that developers may rapidly
assemble functionality out of these basic components.

4.2 Messaging API
The central promise of the Netpixl toolkit is that it affords
an approachable model of message synchronicity across de-
vices. While employing Node.js removes some problems
around message volume and scalability, a developer is still
left with the task of consuming, saving, routing, and sending
events. Netpixl does not dismiss the need for a little net-
working glue, but is rather designed to drastically reduce it
according to our five design goals.

One of Netpixl’s core APIs features the ability to consume
messages from many sources and formats. The message API
is built on functions for consuming and producing messages
through a variety of protocols: serial, OSC, MIDI, MQTT,
and Websockets. Netpixl wraps Node.js libraries for these
protocols and smooths out their individual API inconsis-
tencies with standardized sender and reciever objects. Mes-
sages consumed by receivers are converted to a common
format and sent to the Netpixl router through default (but
developer-extensible) mappings.

4.3 Pixls
In Netpixl, shared models are defined on the server in as
a collection of Pixls, the fundamental unit of computa-
tion created for the toolkit. Events published a server are
converted to an intermediary message structure and con-
sequently routed to a related Pixl. Pixls are defined by
an application developer and may represent an attribute of
data (integer, float, boolean, string, array) or an endpoint
(representing a task). In more formal terms, this model is
a combination of publish/subscribe and RPC (remote pro-
cedure call). By default, Netpixl implements an automatic
pub/sub mechanism where all messages are broadcast to a
current list of clients.

Pixls follow a black-box methodology of extension that
is invisible to developers until needed. The purpose of

9nodejs.org/

�2�0�8



extending functionality is to help developers build server-
side tasks, a more complex but useful addition to Netpixl’s
message routing. The most useful extension of the Pixl API
is the preprocess function. The preprocessor can be used in
conjunction with the utility API to transform, filter, limit,
scale, or compare data before it is committed to the Pixl
model and published to clients. The flow of data through a
Pixl is given in Figure 1.

router

preprocessor
Pixl

notifiers

postprocessor

endpoint task
model 

data

protocol translator

Controller

event

Figure 1: Flow of data through Netpixl

4.4 Synchronization API
Synchronicity is a built-in attribute of the Netpixl toolkit.
That is, all events are published in real-time to connected
clients. Synchronization refers to the present state of the
model data across two or more entities. When a client
connects to the application, it may be desirable to inflate
the local model with the present model of Pixls. This
API assists in serializing an entire Pixl collection for easy
transmission to a client. This API also permits user-defined
functions to synchronize the model to a persistent store such
as a database.

4.5 Utility API
Finally, Netpixl presents methods to encapsulate actions
regularly seen in creative coding and web application devel-
opment. These functions were designed to be used in con-
junction with the preprocessors and postprocessors. This
API contains methods for scaling, filtering, clamping, and
interpolating numerical data. Low-resolution timers are
also available using Node’s built-in timer classes, permitting
periodic function calls. Lastly, the utility API contains
a robust logging foundation to assist with application de-
bugging. The logging functionality also includes a basic
HTML5 GUI to visualize the flow of messages through the
Netpixl routing core.

5. FUTURE WORK AND CONCLUSION
Like many toolkits, Netpixl is in constant state of flux.
One often neglected area of toolkit development is API
documentation, which will be a priority as the toolkit moves
toward a stable release. Similar to IoTM toolkits, another
area we may expand upon is an automatically generated
REST API for Pixl data. REST APIs transact data through
basic HTTP requests, permitting data transactions outside
pub/sub.

In conclusion, Netpixl is a micro-toolkit employing five
design goals designed to empower the developers of net-
worked pieces, exhibitions, and experiments. This toolkit

reduces the amount of glue needed to communicate among
devices and evangelizes the growing Javascript + HTML5
development paradigm. For coders with artistic and whim-
sical ideas, Netpixl affords easier methods of interaction
exploration and rapid prototyping to enhancing creativity
and guide new ideas and experiences to reality.

Netpixl is free and open-source software and may be found
at https://github.com/ddiakopoulos/netpixl.

6. REFERENCES
[1] A. Barbosa. Displaced Soundscapes: A Survey of

Network Systems for Music and Sonic Art Creation.
Leonardo Music Journal, 13:53–59, 2003.

[2] R. Bentley, T. Horstmann, and J. Trevor. The world
wide web as enabling technology for cscw: The case of
bscw. In Computer Supported Cooperative Work, 1997.

[3] N. Bryan and J. Herrera. MoMu: A mobile music
toolkit. In New Interfaces for Musical Expression,
pages 174–177, 2010.

[4] A. Chang, J. Gouldstone, J. Zigelbaum, and H. Ishii.
Simplicity in interaction design. In Tangible and
Embedded Interaction, page 135, New York, New
York, USA, 2007.

[5] E. Georg. Urmusâ an environment for mobile
instrument design and performance. In International
Computer Music Conference, 2010.

[6] C. Gutwin, M. Lippold, and T. Graham. Real-time
groupware in the browser: testing the performance of
web-based networking. In Computer Supported
Cooperative Work, pages 167–176, 2011.

[7] I. Hattwick and M. M. Wanderley. A Dimension
Space for Evaluating Collaborative Musical
Performance Systems. In New Interfaces for Musical
Expression, 2012.

[8] B. Mayton, N. Joliat, and J. A. Paradiso. Patchwerk :
Multi-User Network Control of a Massive Modular
Synthesizer. In New Interfaces for Musical
Expression, 2012.

[9] D. A. Norman. The Design of Everyday Things. Basic
Books, Inc., New York, NY, USA, 2002.

[10] J. Oh and et al. Evolving the mobile phone orchestra.
In New Interfaces for Musical Expression, 2010.

[11] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman,
R. Pausch, T. Selker, and M. Eisenberg. Design
principles for tools to support creative thinking. In
Report of Workshop on Creativity Support Tools, 2005.

[12] C. Roberts, G. Wakefield, and M. Wright. Mobile
Controls On-The-Fly : An Abstraction for
Distributed NIMEs. In New Interfaces for Musical
Expression, 2012.

[13] B. Shneiderman. Creativity support tools: A grand
challenge for hci researchers. In Engineering the User
Interface, 2009.

[14] G. Steinebach, S. Guhathakurta, and H. Hagen.
Visualizing Sustainable Planning. Springer, 2009.

[15] G. Wang, E. Georg, and H. Pentinnen. The Mobile
Phone Orchestra. Oxford University Press, 2010.

[16] G. Weinberg. Interconnected Musical Networks:
Toward a Theoretical Framework. Computer Music
Journal, 29(2):23–39, 2005.

[17] M. Weiser. The Computer for the 21st Century.
Scientific American, 265(3):94–95, 98–102, 104, 1991.

[18] N. Weitzner, M. St, A. Ga, J. Freeman, S. Garrett,
Y.-l. Chen, and G. Tech. massMobile â An Audience
Participation Framework. In New Interfaces for
Musical Expression, 2012.

�2�0�9




