
ARGOS: AN OPEN SOURCE APPLICATION FOR BUILDING MULTI-TOUCH
MUSICAL INTERFACES

Dimitri Diakopoulos1

California Institute of the Arts1
Music Technology

ddiakopoulos@calarts.edu

Ajay Kapur1,2

New Zealand School of Music2
Sonic Arts

akapur@calarts.edu

ABSTRACT

Argos is a multi-touch graphical user interface builder
aimed at applications in musical performance and sound
synthesis. The interface builder lets users construct
interfaces through a library of existing widgets (e.g. knobs,
sliders, buttons), while providing access to an extensible,
open-source toolkit for developing new widgets. Argos
was designed with platform-independence in mind,
enabling it to run on major operating systems in
conjunction with many DIY and commercial multi-touch
devices.

1. INTRODUCTION

Argos targets a specific need for an open-source, easy-to-
use interface builder in the music community. Argos gives
users the ability rapidly prototype complex graphical
interfaces without writing a single line of code. Argos
interfaces can communicate with external programs and
programming languages via user-definable
OpenSoundControl (OSC) messages. Interfaces built using
Argos have been demonstrated in music performance and
synthesis through software like ChucK, Reaktor,
Max/MSP, SuperCollider, PD, and Ableton Live.

Multi-touch software often uses proprietary or custom
libraries to assemble interfaces. One of the core aims of
Argos is to provide a suite of C++ classes to facilitate the
creation of innovative, experimental UI widgets. As a
toolkit, Argos also enables developers to use these widgets
in their own applications without the overhead of the
interface builder itself.

This paper begins with an overview of related musical
multi-touch and interface-oriented software in Section 2.
Section 3 discusses underlying mechanics and features
unique to Argos. Section 4 details some usage scenarios.
We conclude in Section 5 with discussion about future
Argos development.

2. RELATED WORK

Argos stems from a lineage of tabletop computing, multi-
touch interaction, and unique graphical interfaces. This
section gives an overview of the prior academic work and

commercial implementations of user interface builders as
they have influenced the development of Argos.

Some of the most well known work in tabletop music
performance is MTG Barcelona through the evolution of
their interface, the reacTable [5]. Along with the
Audiopad [8] developed at the MIT Media Lab, these
interfaces allow the control of built-in music synthesis
parameters using custom-built GUIs. The Audicle [11],
while not specifically multi-touch related, is an
experimental collection of open-source networkable
interfaces designed to transcend traditional GUI interaction
for musical performance.

The JazzMutant Lemur1 is a commercially available
multi-touch device that integrates with its own proprietary
GUI building software, the JazzEditor. The editor allows
users to build custom interfaces and upload the layout to
the Lemur. TouchOSC2, a similar application, lets users
construct interfaces for Apple’s iPhone and iPad. The
MMF (Max Multi-touch Framework)3 for Max/MSP
enables users to create touch-centric interfaces from the
built-in Max widgets, but akin to the Lemur and
TouchOSC, provides no facility for extending UI widgets
or creating new ones.

Philip Davison and Jeff Han [1] have presented work
that explains the difficulties and limitations of using
proprietary devices and interfaces in the multi-touch
domain. The Lemur, TouchOSC, and MMF all use OSC
[12] to transmit GUI data to a host, but only MMF
supports TUIO [6], a protocol designed to enable direct
touch-tracking on many types of vision-based multi-touch
hardware.

The SurfaceEditor [7] attempts to resolve the problem
of creating an interface builder that works across TUIO-
enabled multi-touch devices. The SurfaceEditor does let
users create new controls via a Java-based plugin-
architecture, but the proprietary licence does not allow
core modifications to the builder itself.

We attempt to combine the best aspects of these works
into a single package: an open platform for building both
common and experimental user interfaces which can be
used across a variety of multi-touch capable devices.

1 http://www.jazzmutant.com
2 http://hexler.net/software/touchosc
3 http://www.mathieuchamagne.com/MMF/

3. IMPLEMENTATION

Argos is built from the ground up utilizing
openFrameworks4, a suite of freely-available C++ libraries
designed to free developers from low-level, platform-
specific implementation concerns. The application contains
common features found across many interface builders in
general, including the ability to move, resize, rotate, and
visually theme controls. Additionally, Argos can save and
load interfaces through XML files. Figure 1 provides a
simple overview of the architecture of Argos.

Figure 1. Architecture of Argos

The development of Argos has been split into two

separate codebases: a desktop application with the
interface builder and performance mode combined, and a
mobile-friendly version which only runs the performance
mode. The viewer is currently under development to
compile against the iPhone & iPad SDK, while versions
for recently announced multi-touch tablets including the
HP Slate5, Notion Ink Adam6, Asus EEE Tablet7, Fusion
Garage JooJoo8, and Neofonie WePad9 are planned.

3.1. User Interaction

In the desktop version, the interface builder presents two
modes to the user: edit and perform. When editing is
activated via a toggle button, a widget editor and browser
appear on the edges of the application window. Edit mode
is primarily designed for traditional mouse/keyboard use,
as the exact layout and configuration of widgets requires
more pointing precision than currently available on smaller
multi-touch devices. Once a user is finished with the
layout, the edit button may be toggled again to prevent
accidental editing.

4 http://www.openframeworks.cc
5 http://www.hp.com/
6 http://www.notionink.com/
7 http://www.asus.com
8 https://www.thejoojoo.com/
9 http://www.wepad.mobi/en

Figure 2. Example interface with buttons, X/Y pad,
sliders, toggles and knobs.

From the browser panel, the user is able to drag and
drop widgets onto the screen where they snap to a fixed
grid. The editor panel binds to a single focused widget,
where the user is presented options to fine-tune width,
height, x-position, y-position, label, min/max value,
network/OSC parameters, and aspects of visual
appearance. Widgets are preset with a high-contrast color
scheme to facilitate readability on projector-based tabletop
surfaces.

Figure 3. UI showing the editor and part of the widget
browser.

3.2. Widget Toolkit

At the sourcecode level, the interface builder can be
separated from the underlying library of widgets so that
developers can build C++ applications with native multi-
touch controls. Although other frameworks such as PyMT
[3] and libnui10 facilitate the development of entire multi-
touch applications, we primarily are concerned with
forming a sharable, reusable library for rapid UI
prototyping.

The Argos source reveals a number of templates
designed to simplify the process of developing new
widgets. Widgets have direct access to touch data directly
associated with them (for example, the location of a finger
within a widget). This flexibility leverages the power of
multi-touch for handling and interpreting complex user-

10 http://www.libnui.net/

input cases. Using this system, widgets can be used in
combination with different libraries and engines for
physics, particle systems, and fluid dynamics. In the
musical domain, the inclusion of these libraries enables the
creation of widgets that produce unique musical data based
on their touch input.

3.3. Platform Compatibility

By using a number of cross-platform libraries wrapped by
openFrameworks, Argos was able to assert full operating-
system independence across Apple OSX, Microsoft
Windows, and many flavors of Linux.

Multi-touch support is maintained across many devices
through the use of platform-agnostic touch tracking. While
Argos is pre-configured to receive TUIO data from a
vision-tracking system such as CCV11, it can be configured
to receive touch events from any platform that provides an
API to its internal touch events, such as the Apple SDK.
The independence of this system ensures that Argos may
be able to use future multi-touch devices as they become
available in the commercial sector.

3.4. Mobile Networking

A current developmental feature is the capability to
quickly share common interfaces across multiple multi-
touch devices. While large tabletop surfaces intrinsically
mediate multi-user collaboration, it is hard to envision
collaborative interfaces as commercial trends currently
favor smaller devices.

In the mobile version, a key element is the ability to
load layouts from a remote source in near real-time. This
feature is similar to aspects of the Mrmr12 project which
aims to provide a standardized methodology of pushing
graphical interfaces to mobile devices for interactive art
and media installations. The ability to share and load
interfaces on-the-fly has a great potential to create
compelling multi-user and collaborative environments on
smaller tablet-format devices.

3.5. Gesture Recognition

In the non-mobile version, Argos incorporates the Sparsh-
UI [9] engine for multi-touch gesture recognition. The goal
of gesture integration is not the control of widgets
themselves, but to promote the possibility of using a
tabletop surface to build interfaces as well as use them. A
few example gestures include the use of a “swipe” to
switch layouts, the use of a “scratch” to indicate an undo,
or a “triple-tap” to indicate switching between editing and
performing modes.

11 http://ccv.nuigroup.com/
12 http://poly.share.dj/wiki/index.php/Mrmr

4. DISCUSSION

Argos has been tested in a number of scenarios dealing
with live music performance and audio synthesis. The
Bricktable [4] was used for usability testing on a 50”
tabletop surface.

4.1. Ableton Live

Inspired by MonoTouchLive13, a static interface
designed for single-touch screens, we designed an
experiment for users to control a live electronic music set
through Ableton Live. Since Live does not natively
support OSC, we used OSCulator14, an OSC to MIDI
converter. Live is particularly suited to interfaces built in
Argos as the result of an easy-to-use MIDI assignment
mode. We asked users to build suitable interfaces and
prompted questions about design choices during the
process.

Initial responses indicated a high degree of usability
between layout design and OSC address assignment. Some
participants noted that complex systems like step-
sequencing and BPM displays would positively impact the
‘performability’ of their interfaces, suggesting that two-
way communication between Argos and host
program/language would be a practical feature.

4.2. ChucK

Argos was also tested with the ChucK [10] audio
programming language to determine convenient uses as a
teaching tool. An informal survey revealed that Argos
worked well as a front-end for patches made in ChucK, but
suffered from clutter due to an overabundance of widgets.
Observationally, this clutter problem impacts other musical
applications that allow rapid GUI prototyping as well, such
as Reaktor. While a more formal study is needed, this
problem signifies a potential need for an automatic layout
mode that might assist users during the initial design of an
interface.

Figure 4. A user interacting with Argos on the Bricktable.

13 http://www.monotouchlive.com/
14 http://www.osculator.net/

5. SUMMARY AND FUTURE WORK

We have demonstrated an application and toolkit designed
to facilitate the rapid creation of graphical interfaces for
music and media applications. Motivated by the absence of
a complete system for interactively prototyping expressive
software interfaces, Argos stands as an application and
toolkit that leverages the multi-touch interaction paradigm
to empower musical users and developers.

In the future we plan to integrate ability to bind
physical controls & fiducials to the surface of Argos
tabletop-based interfaces using a method similar to the one
presented by Fiebrink et. al. in [2].

In addition to continuing code-level optimizations, we
plan to conduct extensive usability and accessibility tests
beyond our preliminary evaluations, especially in the
musical pedagogy and interface design domains. Work to
extend the widget library with physics-based controls,
menus, and other experimental controls is ongoing. Based
on previous evaluation, two-way OSC communication is
currently being implemented.

A stable pre-release version of Argos is available as
C++ source and compiled binary on a Google Code SVN
located at http://code.google.com/p/ofxargos/

6. ACKNOWLEGEMENTS

This application was originally a product of the 2009
Google Summer of Code program. Many thanks to Seth
Sandler for his helpful comments & ideas about multi-
touch interaction design.

7. REFERENCES

[1] Davidson, P. and Han, J. Synthesis and Control
on Large Scale Multi-Touch Sensing Displays. in
Proceedings of the International Conference on
New Interfaces for Musical Expression. 2006.
Paris, France.

[2] Fiebrink, R., et al. Dynamic Mapping of Physical
Controls for Tabletop Groupware. in Human
Factors in Computing Systems. 2009. Boston,
MA.

[3] Hansen, T.E., et al. PyMT: a post-WIMP multi-
touch user interface toolkit. in International
Conference On Interactive Tabletops And
Surface. 2009. Alberta, Canada.

[4] Hochenbaum, J. and Vallis, O. Bricktabke: A
Musical Tangible Multi-Touch Interface. in
Proceedings of the Berlin Open Conference.
2009. Berlin, Germany.

[5] Jorda, S., et al. The reacTable. in Proceedings of
the International Computer Music Conference.
2004. Barcelona, Spain.

[6] Kaltenbrunner, M., et al. TUIO: A Protocol for
Table-Top Tangible User Interfaces. in
Proceedings of the International Workshop on
Gesture in Human-Computer Interaction and
Simulation 2005. Berder Island, France.

[7] Kellum, G. and Crevoisier, A. A Flexible
Mapping Editor for Multi-Touch Musical
Instruments. in Proceedings of the International
Conference on New Interfaces for Musical
Expression. 2009. Pittsburgh, PA.

[8] Patten, J., et al. Interaction Techniques for
Musical Performance with Tabletop Tangible
Interfaces. in Proceedings of the Conference on
Advances in Computer Entertainment
Technology. 2006. Hollywood, California.

[9] Ramanahally, P., et al. Sparsh-UI: A Multi-Touch
Framework for Collaboration and Modular
Gesture Recognition. in Proceedings of the World
Conference on Innovative VR. 2008. Brussels,
Belgium.

[10] Wang, G. and Cook, P. ChucK: A Concurrent,
On-the-fly, Audio Programming Language. in
Proceedings of the International Computer Music
Conference. 2003. Singapore.

[11] Wang, G., et al. Building Collaborative Graphical
Interfaces in the Audicle in Proceedings of the
International Conference on New Interfaces for
Musical Expression. 2006. Paris, France.

[12] Wright, M. and Freed, A. Open Sound Control: A
New Protocol for Communicating with Sound
Synthesizers. in Proceedings of the International
Computer Music Conference. 1997. Thessaloniki,
Greece.

